International Conference on Software Engineering Theory and Practice (SETP-10)

The Reaction Vessel: A General-Purpose Programming Framework Based on the
Chemical Metaphor

Ben E. Cline
BenjysBrain.com
braininfo@benjysbrain.com

Abstract

The chemical metaphor, where some control aspects of
a computational system are analogous to real chemistry,
can provide a novel programming environment that
provides features such as automatic concurrency and
fault tolerance. It has been used in a number of systems
based on such formalisms as the lambda calculus and
rewrite rules in areas including distributed computing
and network protocols. The Reaction Vessel extends the
chemical metaphor to a general-purpose Java
programming framework. To illustrate the features of the
Reaction Vessel, a simple web crawler constructed from
virtual moleculesis described.

1. Introduction

Novel control mechanisms in programming
environments provide elegant solutions to certain classes
of problems and provide programmers with another idea
that expands their "software development thought
processes' [1]. The chemica metaphor', where
computations are performed in a manner analogous to
how chemical molecules interact, provides an interesting
control mechanism that has been explored in a number of
areas where the primary computation mechanism is based
on a formalism such as multiset rewrite systems or the
lambda calculus. The Reaction Vessel software described
here expands the idea to a general-purpose Java
programming framework that uses the chemical metaphor
to provide a system that has an atypica control
mechanism, provides automatic concurrency, is data-
driven, includes stochastic control features, and provides a
degree of fault tolerance.

There is an appeal to the idea of putting virtual data
and program molecules in a virtua reaction vessel that is
well-stirred and having the program molecules collide

1 The chemical metaphor is sometimes called "chemical programming”
or the "chemical reaction metaphor”.

Copyright 2010 ISRST www.promoteresearch.org

with and process the data molecules whose structure they
were designed to recognize. Imagine a virtual reaction
vessel containing a soup of web pages, for example, and
program molecules that extract particular features, such as
images, from the pages. Other program molecules might
then examine the extracted images and discard those that
don’t meet a certain criterion while retaining the qualified
images, such as those that meet a particular size
requirement. By casting the web crawler problem in terms
of a set of chemical reactions, the design of the web
cravler software can take advantage of automatic
concurrency and fault tolerance that is part of the
chemical metaphor control mechanism.

In the general case, the result of the collision between a
program and a data molecule can be empty or a set of one
or more new data molecules including a regenerated or
modified copy of the input data molecule. A sequence of
operations can occur when a number of program
molecules performing computations pass modified data
molecules into the environment containing the program
molecules, providing a mechanism for problem
decomposition by having parts of the problem handled by
different program molecules. Because each collision
involves a single program molecule and a copy of a data
molecule, al data is local to the collision and does not
affect other collisions. Therefore, collisions can be
processed in different threads and even in a distributed
manner. Concurrency is automatic at the collision level,
and the programmer handles higher level synchronization
through the production of data molecules in a chain of
operations.

A general-purpose programming environment with a
chemical metaphor control mechanism can operate in a
deterministic mode where the order of molecular
collisions is predictable and all possible collisions occur
and a stochastic mode where the order of collisions is
pseudo-random and where only a subset of possible
collisions occur. The latter more closely models real
chemistry and can be useful in dealing with problems
which do not have a single correct answer or for
intractable problems where a good problem solution is
adequate. Due to the concurrency, non-deterministic

International Conference on Software Engineering Theory and Practice (SETP-10)

results can aso occur in some problems where race
conditions affect the outcome of the computation at hand.

Systems based on the chemical metaphor can be
formalized in terms of an artificial chemistry which makes
the explanation of a particular system clearer. In a later
section, a definition of the Reaction Vessdl is given in
terms of an artificial chemistry. Section 4 describes an
example of a web crawler implemented in the Reaction
Vessel environment.

2. Background

The chemical metaphor has been used in a number
novel computation systems. Gamma and extensions are
based on multisets and rewrite rules [2][3][4], while
Andrei and Kirchner [5] use a port graph rewriting
system. Other systems are based on the lambda calculus
[6] or production rules as in the Chemical Casting Model
(CCM) [7].

Chemical metaphor-based systems have been proposed
for a variety of problem areas including machine
instruction ordering [8], scientific workflow management
in a distributed environment [9], computer networking
[10][11], and service-oriented architectures [12]. Lin and
Yang [13] have applied the chemical metaphor to multi-
agent systems, and Banatre et al [14] have applied the
chemical metaphor to grid programming.

In the field of artificial life, artificial chemistries [15]
have been created to explore such concepts as evolution,
membrane formation, and self organization; however, the
artificial chemistry formalism is useful for describing
chemical metaphor systems used in both artificial life and
computational frameworks [16]. Artificia chemistry
systems can be divided into two broad subclasses. ones
that simulate individual collisions and those that use
differential or difference equations to simulate rates of
change of molecular concentrations. For systems that
perform general-purpose computations, individua
collisions are smulated.

In contrast to the systems based on formalisms such as
rewrite rules, the Reaction Vessel is a general-purpose
programming framework. Although the system is defined
as an artificial chemistry, individual program molecules
are Java classes with a limited number of restrictions.
While providing many of the benefits of other chemical
metaphor-based systems, the Reaction Vessel program
molecules can take advantage of the object-oriented
paradigm and a wide variety of Java packages including
XML/XHTML parsers, the XPath XML node extraction
package, and aregular expression subsystem.

3. The Reaction Vessa

The Reaction Vessd is first described in terms of an
artificial chemistry, and then details are given about how
the Reaction Vessel is used to solve computational
problems.

3.1 Reaction Vessel asan Artificial Chemistry

Informally, an artificial chemistry is a man-made
chemistry [15]. Although an artificial chemistry definition
can apply to a physical system, many artificial chemistries
are software simulators. In the field of artificial life,
artificia chemistries are typically used to explore the
mechanisms behind biological systems; however, it is
sometimes useful to cast a computational system as an
artificial chemistry.

Systems based on the chemical metaphor can be
formalized in terms of an artificial chemistry. An artificial
chemistry is defined by a triple (S, R, A), where Siis the
set of al possible molecules in the system, R is a set of
collision rules, and A is an algorithm describing a virtual
reaction vessel in which molecules collide [15]. In the
Reaction Vessdl, S is the set of program molecules and
data molecules that are possible in the system. In some
configurations, the set of program molecules is fixed
while the set of data molecules contains the initial set of
seed data molecules and those produced by program
molecules. But there is no restriction on adding and
removing program molecules as the Reaction Vessd
executes.

In Reaction Vessel, thereisonereaction rulein R:

PM; +DM; — &[{DMy,.DMy1,...DMy;m}

where PM; is the i program molecule, DV; is the | data
molecule. The output of the collision between two
molecules is zero or more data molecules labeled DMy to
DM.m- Each program molecule operates on a copy of
DM;, and the data molecule is then removed from the
system unless a copy is regenerated by any of the program
molecules. Program Molecule PM; is not removed from
the system; however, the thread running a collision is
terminated when that collision is complete. By default, al
data molecules are processed by each program molecule;
however, if the data molecule is not one that the program
molecule recognizes, no further action is taken. A
program molecule can implement a concentration method
that is based on the idea of the concentration of a
substance in a real chemical reaction vessel. Based on a
pseudo-random distribution, a program molecule can

International Conference on Software Engineering Theory and Practice (SETP-10)

randomly operate on a subset of the data molecules with
which it is presented. Decisions to operate on particular
data molecules can also be made based on measures of
system dynamics.

Data molecules are stored in a priority queue. Those
with the highest priority are processed first. The priority
scheme is typically used to allow control data molecules
produced by program molecules to be processed by the
reaction vessel software immediately. Control data
molecules are not processed by other program molecules
but are messages processed directly by the reaction vessel
software.

In the artificial chemistry formalism, A defines the
reaction vessel algorithm. In the Resction Vessd, it
implements the reaction rule in the following manner:

e If the next data molecule in the priority queue
is a control data molecule, it is processed
immediately. Such messages from program
molecules can cause a data molecule to be
queued for later processing, limit the number
of concurrent threads, or indicate a
termination condition.

e |If the data molecule is not a control data
molecule and the programmer-defined thread
limit has not been exceeded, each program
molecule is queried to determine if the data
molecule is of the type it is designed to
process. For each compatible program
molecule/data molecule pair, a thread is
started for the program molecule with a
shallow copy of the data molecule. If the
thread limit is exceeded, the control loop
waits until enough threads complete before
processing the data molecule.

e When a program molecule is activated, it
executes the concentration method. If the
concentration decision is false, the program
molecule thread terminates. Otherwise, the
data molecule is processed, and zero or more
data molecules are added to the data
molecule priority queue.

Figure 1 illustrates the Reaction Vessel control
mechanism.

e e Pl attach(Dh) '—’

vy

M. att.ach(DMg)

Threads

Program Molecules

- -

Data Molecule Priority Queue

Figure 1 - The Reaction Vessel processing of the
highest priority data molecule DM, by creating
threads to run attach(DM,) for each compatible
program molecule PM, to PM,,.

It should be noted that the Reaction Vessal is trivially
Turing complete. A universal Turing machine can be
implemented as a program molecule, and the Turing
machine tape can be implemented as a single data
molecule. The Reaction Vessal is seeded with a single
data molecule representing the initial tape configuration.
At each step of the Reaction Vessal, the Turing machine
program molecule would consume the data molecule
representing the tape, do one Turing machine step, and
produce a single data molecule representing the new tape
configuration. When the program molecule reaches its
final step, it could output a special data molecule intended
to display the contents of the final tape and to halt
execution of the Reaction Vessdl.

3.2 Programming with the Reaction Vessel

The Reaction Vessd is a Java implementation of the
artificial chemistry defined in the previous section. There
are three primary object classes in the system:
ReactionVessel, ProgramMolecule, and DataMolecule.
The latter two classes are abstract.

The Reaction Vessdl (class ReactionVessel)
implements the chemical metaphor control mechanism. It
contains a list that holds program molecul es (subclasses of
class ProgramMolecule) and a priority queue that holds
data molecules (subclasses of class DataMolecule). To
create a program, the programmer instantiates a
ReactionVessal object, adds program molecule objects,
and seeds the system with one or more data molecules.
The Reaction Vesse then runs the program by
implementing the algorithm described in the previous
section. The system runs until there are no data molecules
remaining in the system, after a fixed number of

International Conference on Software Engineering Theory and Practice (SETP-10)

collisions, or when a control data molecule that indicates a
stopping condition is sent to the Reaction Vessdl .

There are no restrictions on the implementation of
ProgramMolecule classes other than a requirement for
thread safety and that they extend the ProgramMolecule
class. Data molecules are implemented by classes that
extend the DataMolecule class. The only restrictions on
DataMolecule subclasses are that they provide a shallow
copy method and a "getter" method to access the data.

The Reaction Vessel includes two classes for dealing
with formatted data: a data molecule that holds field data
and a regular expression processing program molecule.
The field data molecule holds a tree of datafields. Fields
are text, numeric, or other data types. A regular
expression program molecule attaches to a field data
molecule, applies the regular expression pattern with
which it was instantiated, and if the pattern matches,
reformats the field tree. One use of these classes is to
recognize standard data formats such as SQL insert
statements and comma-separated records, and to convert
the data into another format. With a library of regular
expression molecules with patterns that recognize certain
data formats and extract fields from them, exemplar data
could be placed in the reaction vessel, and the regular
expression molecules would recognize the format and
provide a template for dealing with large data sets. The
regular expression program molecule also supports string
matching and substitution on afield tree.

Although program molecules can only operate on a
single data molecule at atime, a special list data molecule
can hold references to a number of data molecules. To
create a data molecule for a specific program molecule,
other helper program molecules would capture,
preprocess, and merge the needed data molecules into a
list data molecule.

Although program molecules cannot collide with each
other, they can ill exchange information via data
molecules. Using this method, communi cating agents can
be implemented as program molecules in the Reaction
Vessel.

The Reaction Vessel contains several mechanisms to
control the reaction rate of the computation at hand. First,
the programmer provides a thread limit, as described
above. Second, the thread limit can be modified
dynamically by a program molecule by generating a
control data molecule and adding it to the data molecule
priority queue. Third, a program molecule that is
consuming a large amount of computational resourcesin a
number of threads can requeue the data molecule it has
been given and process it when resources become

available. These mechanisms provide a means to limit the
number of concurrent threads and prevent resource
thrashing.

4. Demonstration

A simple web crawler was implemented using the
Reaction Vessel. The crawler selects web images that fit
an empirically derived formula [17] that defines the
typical size and aspect ratio of newspaper-style comics
that are found on the web. The following program
molecules are added to the virtua reaction vesse to
implement the web crawler:

e Fetcher — This program molecule processes a
data molecule containing a URL and uses an
HTML parser to creaste a data molecule
containing a Document Object Model (DOM)
that represents the web page.

e Harvester — This program molecule uses XPath
to retrieve URLs from a DOM. There are two
instances of this class in the web crawler.
Harvester | extracts hyperlink URLs, while
Harvester Il extracts image URLs. The former
are placed in data molecules recognized by the
Fetcher program molecule, while the latter are
placed in data molecules intended for the
ImageFetcher program molecule.

e |mageFetcher — This program molecule fetches
an image based on a URL and saves it to a
database if it matches the size and aspect ratio of
acomic.

The system uses two types of data molecules:

e A URL data molecule with two fields. One
contains a URL, and the other contains
information about the URL, eg., if it is a web
page URL or animage URL.

e A datamolecule that holds the DOM of a parsed

page.

Figure 2 is a diagram of the web crawler system. The
Reaction Vessdl is started with one instance of the Fetcher
program molecule, two instances of the Harvester
program molecule (one for processing hyperlinks and one
for processing images), and an instance of the
ImageFetcher program molecule. 1t is also seeded with
the URL of one of more web pages containing comics or
links to comic pages.

International Conference on Software Engineering Theory and Practice (SETP-10)

Yy
p— :

@' Harwester I
Fetcher \@*
Harvester [1

Imagd:emher

Legend

O Data module containing a page URL.
® Data molecule containing an image URL.

@ Data molecule containing a DO

Figure 2 - Reaction Vessel web crawler

As the system runs, the Fetcher loads and parses web
pages, the Harvesters extract web page and image URLS,
and the ImageFetcher loads and tests images for potential
comics. The Harvester that extracts web page URLS
produces work for the Fetcher.

This web crawler illustrates the need for reaction
control. Because of the feedback loop between Harvester
| and the Fetcher, it is easy for the system to go into a
state where thread and memory resources are exhausted.
Simple tuning can be performed by setting a thread limit.
The Fetcher is also designed to limit the number of
threads that are concurrently executing its attach() method
when there are too many threads fetching web pages by
sending a control data molecule to the Reaction Vessdl to
requeue its current data molecule for later processing.

One problem with implementing the web crawler in the
Reaction Vessel is that a collison between a data
molecule and a program molecule requires global data to
execute efficiently. For example, the Fetcher program
molecule might attach to a data molecule referencing a
web page it has aready fetched. Fetching the page again
is wasteful and unnecessary. |n some cases such asthis, a
static instance variable in the Fetcher object can hold a
hash table of previoudy fetched pages. In other cases, the
creation of high-priority data molecules containing control
information can be passed between different program
molecules to implement this type of information sharing.

The fault tolerant aspects of the Reaction Vessel are
useful in the simple web crawler. Because of the thread
architecture, a thread that is running the attach() method
of a program molecule can die with an exception without

affecting other threads executing the same and other
program molecules. Optionally, information from
uncaught threads can be turned into data molecules that
are processed by a user-supplied program molecule. This
mechanism alows the programmer to design a program
molecule that exerts high-level control if it is needed for
the problem at hand.

5. System Evaluation

The Reaction Vessdl framework is intended to relieve
the programmer of the task of low-level thread creation
and synchronization and to provide a means of problem
decomposition using the chemical metaphor. To perform
these tasks, the Reaction Vessel has a control loop thread
that monitors the data molecule queue and starts threads
for program molecule/data molecule pairs as the thread
limit allows. Reaction Vessal overhead comes from this
loop, the implementation of the Java Object wait() and
notify() thread synchronization methods, the creation of
new threads, and the creation of shallow copies of the data
molecules. Each time a program molecule/data molecule
pair is selected, the Reaction Vessel runs a method in the
program molecule to determine if it is compatible with the
data molecule. If it is, it creates a shallow copy of the
data molecule and starts a new thread in the existing
program molecule object.

Additional delays occur when data molecules in the
priority queue are blocked from being processed because
of the thread limit. The result is that some program
molecules might have many threads executing their
attach() method while other program molecules are
dormant. In some cases, this situation might be intended;
however, in other cases the priority queue might become a
throughput bottleneck. Careful use of priority queue
priorities can reduce the delay in some cases.

Simple performance testing was preformed between the
Reaction Vessel and a hand-coded test program. In one
case where one or more Fast Fourier Transforms (FFT)
were used as the load for a single thread, the means of the
sampled computation times for the Reaction Vessel and
the hand-coded program for various numbers of threads
was not significantly different. A similar test where the
program molecule calculation was trivial showed that the
Reaction Vessal was significantly slower than the hand-
coded test program. The reduction in performance was
not due to a priority queue bottleneck in this case but to
the control loop overhead.

When considering the Reaction Vessel as a tool to
solve a particular problem, one should consider whether

International Conference on Software Engineering Theory and Practice (SETP-10)

the chemical metaphor is suited to the problem and how
the control loop and priority queue bottlenecks will
impact performance.

6. Conclusion and Future Work

By casting the Reaction Vesse as an atificia
chemistry, a precise statement of Reaction Vessel
semantics is possible. The resulting framework is small,
easy to understand, and easily extendable. Programmers
can create new programs in the framework by either
instantiating existing program molecules or by extending
existing ones.

The Reaction Vessel has features of the chemical
metaphor including automatic concurrency and provides a
different way to think about general-purpose computing.
The system can be used to solve complex programming
problems asillustrated by the simple web crawler in away
that helps the devel oper frame the problem in a novel way.

The Reaction Vessel has primarily been applied to
problems related to parsing web pages and the automatic
recognition of data structures and data reformatting;
however, it can be used for numeric computations and
other problem areas where concurrency is desirable. A
larger library of program molecules that would make the
system more easily extendable to other types of problems
is planned.

One of the benefits of using a system with the chemical
metaphor is the automatic concurrency at the collision
level; however, the thread-based concurrency of the
current version is limited. A distributed version would be
more useful; however, concurrent access to program
molecule instance variables between distributed instances
of the class would not be possible. Other control
mechanisms based on the passing of data molecules would
be necessary.

7. References

[1] R. W. Sebesta, Concepts of Programming Languages,
Seventh Edition, Addison-Wedley, Reading, Massachusetts,
20086.

[2] J.P. Banatre and D. le Metayer, “A new computational
model and its discipline of programming”, Technical report no.
566, INRIA, 1986.

[3] G. Berry and G. Boudol, “The chemical abstract machine”,
Theoret. Comput. Sci. 96 (1992) 217-248.

[4] G. A. L. Pallard, F. M. G. Franca, K. A. M. Filho, "A
distributed implementation of structured gamma,” p. 0445,

Eighth International Conference on Parallel and Distributed
Systems (ICPADS01), 2001.

[5] O. Andrei and H. Kirchner, “Strategic port graph rewriting
for autonomic computing”. In: Proc. of TFIT'08. (2008).

[6] Fontana, W., “Algorithmic chemistry”, In C. G. Langton, C.
Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial Life Il
(pp- 159-210). Redwood City, CA: Addison-Wesley, 1992.

[7] Y. Kanada, and M. Hirokawa, “ Stochastic problem solving
by loca computation based on self-organization paradigm’,
IEEE 27th Hawaii International Conference on System
Sciences, pp. 82-91, 1994.

[8] W. Banzhaf and C. W. G. Lasarczyk, “A new programming
paradigm inspired by artificial chemistries’, In J.-P. Ban™atre,
J-L. Giavitto, P. Fradet, and O. Michel, editors, Unconventional
Programming Paradigms (UPP-04), LNCS, Berlin, 2005.

Springer.

[9] Nemeth, Z.; Perez, C.; Priol, T., "Workflow enactment based
on a chemical metaphor,” Software Engineering and Formal
Methods, 2005. SEFM 2005. Third IEEE International
Conference on, vol., no., pp. 127-136, 7-9 Sept. 2005.

[10] T. Meyer, L. Yamamoto, and C. Tschudin, “An artificial
chemistry for networking”, Bio-Inspired Computing and
Communication, 2008, pp. 45-57.

[11] Meyer, T., Tschudin, C., “Chemica networking protocols’,
In: Proc. 8th ACM Workshop on Hot Topics in Networks
(HotNets-VI11). (2009).

[12] J.-P. Banatre and T. Priol. “Chemical programming of
future service-oriented architectures’, Journal of Software, 4(7)
p. 738-746, 2009.

[13] H. Lin and C. Yang, “Specifying distributed multi-agent
systems in chemical reaction metaphor”, The International
Journal of Artificial Intelligence, Neural Networks, and
Complex Problem Solving Technologies, Springer-Verlag,
24(2), 2006, pp. 155-168.

[14] Banatre, J.P., Le Scouarnec, N., Priol, T., Radenac, Y.:
“Towards ‘chemical’ desktop grids’, In: Proceedings of the 3rd
IEEE International Conference on e-Science and Grid
Computing (e-Science 2007), |IEEE Computer Society Press,
Los Alamitos (2007).

[15] P. Dittrich, J. Ziegler, W. Banzhaf, “Artificial chemistries:
A review”, Artificial Life 7, 225-275 (2001).

[16] P. Dittrich, “Chemica computing”, In Jean-Pierre Banétre,
Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors,
UPP, volume 3566 of Lecture Notes in Computer Science,
pages 19-32. Springer, 2004.

[17] B. Cline, “Automatic extraction of comics from web
pages’, <http://www.benjysbrain.com/misc/comics/>, 2009.

