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Abstract 
 

The chemical metaphor, where some control aspects of 
a computational system are analogous to real chemistry, 
can provide a novel programming environment that 
provides features such as automatic concurrency and 
fault tolerance.  It has been used in a number of systems 
based on such formalisms as the lambda calculus and 
rewrite rules in areas including distributed computing 
and network protocols.  The Reaction Vessel extends the 
chemical metaphor to a general-purpose Java 
programming framework.  To illustrate the features of the 
Reaction Vessel, a simple web crawler constructed from 
virtual molecules is described. 
 
 

1. Introduction 
 

Novel control mechanisms in programming 
environments provide elegant solutions to certain classes 
of problems and provide programmers with another idea 
that expands their "software development thought 
processes" [1].  The chemical metaphor1, where 
computations are performed in a manner analogous to 
how chemical molecules interact, provides an interesting 
control mechanism that has been explored in a number of 
areas where the primary computation mechanism is based 
on a formalism such as multiset rewrite systems or the 
lambda calculus.  The Reaction Vessel software described 
here expands the idea to a general-purpose Java 
programming framework that uses the chemical metaphor 
to provide a system that has an atypical control 
mechanism, provides automatic concurrency, is data-
driven, includes stochastic control features, and provides a 
degree of fault tolerance. 

 
There is an appeal to the idea of putting virtual data 

and program molecules in a virtual reaction vessel that is 
well-stirred and having the program molecules collide 

                                                 
1 The chemical metaphor is sometimes called "chemical programming" 
or the "chemical reaction metaphor". 
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with and process the data molecules whose structure they 
were designed to recognize.  Imagine a virtual reaction 
vessel containing a soup of web pages, for example, and 
program molecules that extract particular features, such as 
images, from the pages.  Other program molecules might 
then examine the extracted images and discard those that 
don’t meet a certain criterion while retaining the qualified 
images, such as those that meet a particular size 
requirement.  By casting the web crawler problem in terms 
of a set of chemical reactions, the design of the web 
crawler software can take advantage of automatic 
concurrency and fault tolerance that is part of the 
chemical metaphor control mechanism. 
 

In the general case, the result of the collision between a 
program and a data molecule can be empty or a set of one 
or more new data molecules including a regenerated or 
modified copy of the input data molecule.  A sequence of 
operations can occur when a number of program 
molecules performing computations pass modified data 
molecules into the environment containing the program 
molecules, providing a mechanism for problem 
decomposition by having parts of the problem handled by 
different program molecules.  Because each collision 
involves a single program molecule and a copy of a data 
molecule, all data is local to the collision and does not 
affect other collisions.  Therefore, collisions can be 
processed in different threads and even in a distributed 
manner.  Concurrency is automatic at the collision level, 
and the programmer handles higher level synchronization 
through the production of data molecules in a chain of 
operations. 

 
A general-purpose programming environment with a 

chemical metaphor control mechanism can operate in a 
deterministic mode where the order of molecular 
collisions is predictable and all possible collisions occur 
and a stochastic mode where the order of collisions is 
pseudo-random and where only a subset of possible 
collisions occur.  The latter more closely models real 
chemistry and can be useful in dealing with problems 
which do not have a single correct answer or for 
intractable problems where a good problem solution is 
adequate.  Due to the concurrency, non-deterministic 
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results can also occur in some problems where race 
conditions affect the outcome of the computation at hand. 

 
Systems based on the chemical metaphor can be 

formalized in terms of an artificial chemistry which makes 
the explanation of a particular system clearer.  In a later 
section, a definition of the Reaction Vessel is given in 
terms of an artificial chemistry.  Section 4 describes an 
example of a web crawler implemented in the Reaction 
Vessel environment. 
 

2. Background 
 

The chemical metaphor has been used in a number 
novel computation systems.  Gamma and extensions are 
based on multisets and rewrite rules [2][3][4], while 
Andrei and Kirchner [5] use a port graph rewriting 
system.  Other systems are based on the lambda calculus 
[6] or production rules as in the Chemical Casting Model 
(CCM) [7].    

 
Chemical metaphor-based systems have been proposed 

for a variety of problem areas including machine 
instruction ordering [8], scientific workflow management 
in a distributed environment [9], computer networking 
[10][11], and service-oriented architectures [12].  Lin and 
Yang [13] have applied the chemical metaphor to multi-
agent systems, and Banatre et al [14] have applied the 
chemical metaphor to grid programming. 

 
In the field of artificial life, artificial chemistries [15] 

have been created to explore such concepts as evolution, 
membrane formation, and self organization; however, the 
artificial chemistry formalism is useful for describing 
chemical metaphor systems used in both artificial life and 
computational frameworks [16].   Artificial chemistry 
systems can be divided into two broad subclasses:  ones 
that simulate individual collisions and those that use 
differential or difference equations to simulate rates of 
change of molecular concentrations.  For systems that 
perform general-purpose computations, individual 
collisions are simulated. 

 
In contrast to the systems based on formalisms such as 

rewrite rules, the Reaction Vessel is a general-purpose 
programming framework.  Although the system is defined 
as an artificial chemistry, individual program molecules 
are Java classes with a limited number of restrictions.  
While providing many of the benefits of other chemical 
metaphor-based systems, the Reaction Vessel program 
molecules can take advantage of the object-oriented 
paradigm and a wide variety of Java packages including 
XML/XHTML parsers, the XPath XML node extraction 
package, and a regular expression subsystem. 

3. The Reaction Vessel 
 

The Reaction Vessel is first described in terms of an 
artificial chemistry, and then details are given about how 
the Reaction Vessel is used to solve computational 
problems. 
 
 
3.1 Reaction Vessel as an Artificial Chemistry 
 

Informally, an artificial chemistry is a man-made 
chemistry [15].  Although an artificial chemistry definition 
can apply to a physical system, many artificial chemistries 
are software simulators.  In the field of artificial life, 
artificial chemistries are typically used to explore the 
mechanisms behind biological systems; however, it is 
sometimes useful to cast a computational system as an 
artificial chemistry. 

 
Systems based on the chemical metaphor can be 

formalized in terms of an artificial chemistry.  An artificial 
chemistry is defined by a triple (S, R, A), where S is the 
set of all possible molecules in the system, R is a set of 
collision rules, and A is an algorithm describing a virtual 
reaction vessel in which molecules collide [15].  In the 
Reaction Vessel, S is the set of program molecules and 
data molecules that are possible in the system.  In some 
configurations, the set of program molecules is fixed 
while the set of data molecules contains the initial set of 
seed data molecules and those produced by program 
molecules.  But there is no restriction on adding and 
removing program molecules as the Reaction Vessel 
executes. 

 
In Reaction Vessel, there is one reaction rule in R:  
 

{ }mk1kkji ,...,DM,DMDM|εDMPM ++→+  

 
where PMi is the ith program molecule, DMj is the jth data 
molecule.  The output of the collision between two 
molecules is zero or more data molecules labeled DMk to 
DMk+m.  Each program molecule operates on a copy of 
DMj, and the data molecule is then removed from the 
system unless a copy is regenerated by any of the program 
molecules.  Program Molecule PMi is not removed from 
the system; however, the thread running a collision is 
terminated when that collision is complete. By default, all 
data molecules are processed by each program molecule; 
however, if the data molecule is not one that the program 
molecule recognizes, no further action is taken.  A 
program molecule can implement a concentration method 
that is based on the idea of the concentration of a 
substance in a real chemical reaction vessel.  Based on a 
pseudo-random distribution, a program molecule can 
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randomly operate on a subset of the data molecules with 
which it is presented.  Decisions to operate on particular 
data molecules can also be made based on measures of 
system dynamics. 

 
Data molecules are stored in a priority queue.  Those 

with the highest priority are processed first.  The priority 
scheme is typically used to allow control data molecules 
produced by program molecules to be processed by the 
reaction vessel software immediately.  Control data 
molecules are not processed by other program molecules 
but are messages processed directly by the reaction vessel 
software. 

 
In the artificial chemistry formalism, A defines the 

reaction vessel algorithm. In the Reaction Vessel, it 
implements the reaction rule in the following manner: 

 
• If the next data molecule in the priority queue 

is a control data molecule, it is processed 
immediately.  Such messages from program 
molecules can cause a data molecule to be 
queued for later processing, limit the number 
of concurrent threads, or indicate a 
termination condition. 

• If the data molecule is not a control data 
molecule and the programmer-defined thread 
limit has not been exceeded, each program 
molecule is queried to determine if the data 
molecule is of the type it is designed to 
process.  For each compatible program 
molecule/data molecule pair, a thread is 
started for the program molecule with a 
shallow copy of the data molecule.  If the 
thread limit is exceeded, the control loop 
waits until enough threads complete before 
processing the data molecule.     

• When a program molecule is activated, it 
executes the concentration method. If the 
concentration decision is false, the program 
molecule thread terminates.  Otherwise, the        
data molecule is processed, and zero or more 
data molecules are added to the data 
molecule priority queue. 

 
Figure 1 illustrates the Reaction Vessel control 

mechanism. 
 

 
 

Figure 1 - The Reaction Vessel processing of the 
highest priority data molecule DM0 by creating 
threads to run attach(DM0) for each compatible 
program molecule PM0 to PMn. 

 
It should be noted that the Reaction Vessel is trivially 

Turing complete.  A universal Turing machine can be 
implemented as a program molecule, and the Turing 
machine tape can be implemented as a single data 
molecule.  The Reaction Vessel is seeded with a single 
data molecule representing the initial tape configuration.  
At each step of the Reaction Vessel, the Turing machine 
program molecule would consume the data molecule 
representing the tape, do one Turing machine step, and 
produce a single data molecule representing the new tape 
configuration.  When the program molecule reaches its 
final step, it could output a special data molecule intended 
to display the contents of the final tape and to halt 
execution of the Reaction Vessel. 
 
3.2 Programming with the Reaction Vessel 
 

The Reaction Vessel is a Java implementation of the 
artificial chemistry defined in the previous section.  There 
are three primary object classes in the system:  
ReactionVessel, ProgramMolecule, and DataMolecule.  
The latter two classes are abstract. 

 
The Reaction Vessel (class ReactionVessel) 

implements the chemical metaphor control mechanism.  It 
contains a list that holds program molecules (subclasses of 
class ProgramMolecule) and a priority queue that holds 
data molecules (subclasses of class DataMolecule).  To 
create a program, the programmer instantiates a 
ReactionVessel object, adds program molecule objects, 
and seeds the system with one or more data molecules.  
The Reaction Vessel then runs the program by 
implementing the algorithm described in the previous 
section.  The system runs until there are no data molecules 
remaining in the system, after a fixed number of 
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collisions, or when a control data molecule that indicates a 
stopping condition is sent to the Reaction Vessel . 
 

There are no restrictions on the implementation of 
ProgramMolecule classes other than a requirement for 
thread safety and that they extend the ProgramMolecule 
class.  Data molecules are implemented by classes that 
extend the DataMolecule class.  The only restrictions on 
DataMolecule subclasses are that they provide a shallow 
copy method and a "getter" method to access the data. 

 
The Reaction Vessel includes two classes for dealing 

with formatted data:  a data molecule that holds field data 
and a regular expression processing program molecule.  
The field data molecule holds a tree of data fields.  Fields 
are text, numeric, or other data types.  A regular 
expression program molecule attaches to a field data 
molecule, applies the regular expression pattern with 
which it was instantiated, and if the pattern matches, 
reformats the field tree.  One use of these classes is to 
recognize standard data formats such as SQL insert 
statements and comma-separated records, and to convert 
the data into another format.  With a library of regular 
expression molecules with patterns that recognize certain 
data formats and extract fields from them, exemplar data 
could be placed in the reaction vessel, and the regular 
expression molecules would recognize the format and 
provide a template for dealing with large data sets.  The 
regular expression program molecule also supports string 
matching and substitution on a field tree. 
 

Although program molecules can only operate on a 
single data molecule at a time, a special list data molecule 
can hold references to a number of data molecules.  To 
create a data molecule for a specific program molecule, 
other helper program molecules would capture, 
preprocess, and merge the needed data molecules into a 
list data molecule.   

 
Although program molecules cannot collide with each 

other, they can still exchange information via data 
molecules.  Using this method, communicating agents can 
be implemented as program molecules in the Reaction 
Vessel. 

 
The Reaction Vessel contains several mechanisms to 

control the reaction rate of the computation at hand.  First, 
the programmer provides a thread limit, as described 
above.  Second, the thread limit can be modified 
dynamically by a program molecule by generating a 
control data molecule and adding it to the data molecule 
priority queue.   Third, a program molecule that is 
consuming a large amount of computational resources in a 
number of threads can requeue the data molecule it has 
been given and process it when resources become 

available.  These mechanisms provide a means to limit the 
number of concurrent threads and prevent resource 
thrashing. 
 
4. Demonstration 
 

A simple web crawler was implemented using the 
Reaction Vessel.  The crawler selects web images that fit 
an empirically derived formula [17] that defines the 
typical size and aspect ratio of newspaper-style comics 
that are found on the web.  The following program 
molecules are added to the virtual reaction vessel to 
implement the web crawler: 
 

• Fetcher – This program molecule processes a 
data molecule containing a URL and uses an 
HTML parser to create a data molecule 
containing a Document Object Model (DOM) 
that represents the web page. 

• Harvester – This program molecule uses XPath 
to retrieve URLs from a DOM.  There are two 
instances of this class in the web crawler.  
Harvester I extracts hyperlink URLs, while 
Harvester II extracts image URLs.  The former 
are placed in data molecules recognized by the 
Fetcher program molecule, while the latter are 
placed in data molecules intended for the 
ImageFetcher program molecule. 

• ImageFetcher – This program molecule fetches 
an image based on a URL and saves it to a 
database if it matches the size and aspect ratio of 
a comic. 

 
The system uses two types of data molecules: 

 
• A URL data molecule with two fields.  One 

contains a URL, and the other contains 
information about the URL, e.g., if it is a web 
page URL or an image URL. 

• A data molecule that holds the DOM of a parsed 
page. 

 
Figure 2 is a diagram of the web crawler system.  The 

Reaction Vessel is started with one instance of the Fetcher 
program molecule, two instances of the Harvester 
program molecule (one for processing hyperlinks and one 
for processing images), and an instance of the 
ImageFetcher program molecule.  It is also seeded with 
the URL of one of more web pages containing comics or 
links to comic pages. 
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Figure 2 – Reaction Vessel  web crawler 
 

As the system runs, the Fetcher loads and parses web 
pages, the Harvesters extract web page and image URLs, 
and the ImageFetcher loads and tests images for potential 
comics.  The Harvester that extracts web page URLs 
produces work for the Fetcher.   

 
This web crawler illustrates the need for reaction 

control.  Because of the feedback loop between Harvester 
I and the Fetcher, it is easy for the system to go into a 
state where thread and memory resources are exhausted.  
Simple tuning can be performed by setting a thread limit.  
The Fetcher is also designed to limit the number of 
threads that are concurrently executing its attach() method  
when there are too many threads fetching web pages by 
sending a control data molecule to the Reaction Vessel to 
requeue its current data molecule for later processing. 

 
One problem with implementing the web crawler in the 

Reaction Vessel is that a collision between a data 
molecule and a program molecule requires global data to 
execute efficiently.  For example, the Fetcher program 
molecule might attach to a data molecule referencing a 
web page it has already fetched.  Fetching the page again 
is wasteful and unnecessary.  In some cases such as this, a 
static instance variable in the Fetcher object can hold a 
hash table of previously fetched pages.  In other cases, the 
creation of high-priority data molecules containing control 
information can be passed between different program 
molecules to implement this type of information sharing. 
 

The fault tolerant aspects of the Reaction Vessel are 
useful in the simple web crawler.  Because of the thread 
architecture, a thread that is running the attach() method 
of a program molecule can die with an exception without 

affecting other threads executing the same and other 
program molecules.  Optionally, information from 
uncaught threads can be turned into data molecules that 
are processed by a user-supplied program molecule.  This 
mechanism allows the programmer to design a program 
molecule that exerts high-level control if it is needed for 
the problem at hand. 
 
 
5.  System Evaluation 
 

The Reaction Vessel framework is intended to relieve 
the programmer of the task of low-level thread creation 
and synchronization and to provide a means of problem 
decomposition using the chemical metaphor.  To perform 
these tasks, the Reaction Vessel has a control loop thread 
that monitors the data molecule queue and starts threads 
for program molecule/data molecule pairs as the thread 
limit allows.  Reaction Vessel overhead comes from this 
loop, the implementation of the Java Object wait() and 
notify() thread synchronization methods, the creation of 
new threads, and the creation of shallow copies of the data 
molecules.  Each time a program molecule/data molecule 
pair is selected, the Reaction Vessel runs a method in the 
program molecule to determine if it is compatible with the 
data molecule.  If it is, it creates a shallow copy of the 
data molecule and starts a new thread in the existing 
program molecule object. 

 
Additional delays occur when data molecules in the 

priority queue are blocked from being processed because 
of the thread limit.  The result is that some program 
molecules might have many threads executing their 
attach() method while other program molecules are 
dormant.  In some cases, this situation might be intended; 
however, in other cases the priority queue might become a 
throughput bottleneck.  Careful use of priority queue 
priorities can reduce the delay in some cases.   

 
Simple performance testing was preformed between the 

Reaction Vessel and a hand-coded test program.  In one 
case where one or more Fast Fourier Transforms (FFT) 
were used as the load for a single thread, the means of the 
sampled computation times for the Reaction Vessel and 
the hand-coded program for various numbers of threads 
was not significantly different.  A similar test where the 
program molecule calculation was trivial showed that the 
Reaction Vessel was significantly slower than the hand-
coded test program.  The reduction in performance was 
not due to a priority queue bottleneck in this case but to 
the control loop overhead. 

 
When considering the Reaction Vessel as a tool to 

solve a particular problem, one should consider whether 
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the chemical metaphor is suited to the problem and how 
the control loop and priority queue bottlenecks will 
impact performance.   
 
6.  Conclusion and Future Work 
 

By casting the Reaction Vessel as an artificial 
chemistry, a precise statement of Reaction Vessel 
semantics is possible.  The resulting framework is small, 
easy to understand, and easily extendable.  Programmers 
can create new programs in the framework by either 
instantiating existing program molecules or by extending 
existing ones. 

 
The Reaction Vessel has features of the chemical 

metaphor including automatic concurrency and provides a 
different way to think about general-purpose computing.  
The system can be used to solve complex programming 
problems as illustrated by the simple web crawler in a way 
that helps the developer frame the problem in a novel way. 

 
The Reaction Vessel has primarily been applied to 

problems related to parsing web pages and the automatic 
recognition of data structures and data reformatting; 
however, it can be used for numeric computations and 
other problem areas where concurrency is desirable.  A 
larger library of program molecules that would make the 
system more easily extendable to other types of problems 
is planned.   

 
One of the benefits of using a system with the chemical 

metaphor is the automatic concurrency at the collision 
level; however, the thread-based concurrency of the 
current version is limited.  A distributed version would be 
more useful; however, concurrent access to program 
molecule instance variables between distributed instances 
of the class would not be possible.  Other control 
mechanisms based on the passing of data molecules would 
be necessary. 
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